Step of Proof: p-compose-associative
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
p-compose-associative
:
A
,
B
,
C
,
D
:Type,
h
:(
A
(
B
+ Top)),
g
:(
B
(
C
+ Top)),
f
:(
C
(
D
+ Top)).
f
o
g
o
h
=
f
o
g
o
h
latex
by ((Auto
)
CollapseTHEN (((Ext)
CollapseTHEN (((Auto
)
CollapseTHEN (((RepUR ``
C
p-compose can-apply do-apply`` ( 0)
)
CollapseTHEN ((if (((first_nat 2:n)) = 0) then (Repeat (((
C
((GenConclAtAddr [3;1;1])
CollapseTHENA (Auto
))
)
C
CollapseTHEN (((D (-2)
)
C
CollapseTHEN (((
CC
Reduce 0)
C
CollapseTHEN ((Try ((Complete (Auto
))
))
))
))
))
)) else (RepeatFor (first_nat 2:n
CC
) (((((GenConclAtAddr [3;1;1])
CollapseTHENA (Auto
))
)
C
CollapseTHEN (((D (-2)
)
CCo
CollapseTHEN (((Reduce 0)
C
CollapseTHEN ((Try ((Complete (Auto
))
))
))
))
))
)))
))
))
))
))
CC
latex
CC
.
Definitions
can-apply(
f
;
x
)
,
do-apply(
f
;
x
)
,
if
b
then
t
else
f
fi
,
isl(
x
)
,
outl(
x
)
,
b
,
S
T
,
P
Q
,
f
(
a
)
,
inl
x
,
Top
,
inr
x
,
Decision
,
left
+
right
,
Type
,
f
o
g
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
t
T
,
s
=
t
Lemmas
ifthenelse
wf
,
isl
wf
,
outl
wf
,
assert
wf
,
member
wf
,
top
wf
,
p-compose
wf
origin